Виды градусов температуры

Температура тела: пониженная, нормальная и высокая

Температура тела — показатель теплового состояния организма человека или другого живого организма, который отражает соотношение между выработкой тепла различных органов и тканей и теплообменом между ними и внешней средой.

Температура тела зависит от:

— возраста;
— времени суток;
— воздействие на организм окружающей среды;
— состояния здоровья;
— беременности;
— особенностей организма;
— других факторов, которые еще не выяснены.

Виды температуры тела

В зависимости от показаний термометра, выделяют следующие виды температуры тела:

Пониженная и низкая температура тела: меньше 35°С;
Нормальная температура тела: 35°С — 37°С;
Субфебрильная температура тела: 37°С — 38°С;
Фебрильная температура тела: 38°С — 39°С;
Пиретическая температура тела: 39°С — 41°С;
Гиперпиретическая температура тела: выше 41°С.

По другой классификации выделяют следующие разновидности температуры тела (состояния организма):

  • Гипотермия. Температура тела опускается ниже 35°С;
  • Нормальная температура. Температура тела находится в промежутке от 35°С до 37°С (в состояния организма, возраста, пола, момента измерения и других факторов);
  • Гипертермия. Температура тела поднимается выше 37°С;
  • Лихорадка. Повышение температуры тела, которое в отличии от гипотермии происходит в условиях сохранения механизмов терморегуляции организма.

Пониженная и низкая температура тела

Пониженная температура тела встречается реже, нежели повышенная или высокая, но тем не менее, она также достаточно опасная для жизни человека. Если температура тела понижается до 27°С и ниже, есть вероятность попадания человека в кому, хотя случаются случаи, когда люди выживали при переохлаждении организма и до 16°С.

Пониженной считается температура взрослого здорового человека ниже 36,0°C. В других случаях, пониженной температурой следует считать температуру, которая на 0,5°С – 1,5°С ниже Вашей нормальной температуры.

Низкой считается температура тела, которая ниже более чем на 1,5°С от нормальной температуры Вашего тела, или же если Ваша температура опустилась ниже 35°С (гипотермия). В этом случае необходимо срочно вызывать врача.

Причины пониженной температуры:

— слабый иммунитет;
— сильное переохлаждение;
— последствие перенесенной болезни;
— болезни щитовидной железы;
— лекарственные препараты;
— пониженный гемоглобин;
— гормональный дисбаланс
— внутренние кровотечения;
— отравления
— усталость и др.

Основными и самыми частыми симптомами пониженной температуры являются упадок сил и головокружение.

Нормальная температура тела

Нормальная температура тела, как отмечают многие специалисты, в основном зависит от возраста и времени суток.

Рассмотрим значения верхней границы нормальной температуры тела у людей различного возраста, если измерять ее под мышкой:

нормальная температура у новорожденных: 36,8°С;
нормальная температура у 6 месячных младенцев: 37,4°С;
нормальная температура у 1 годичных детей: 37,4°С;
нормальная температура у 3 годичных детей: 37,4°С;
нормальная температура у 6 летних детей: 37,0°С;
нормальная температура у взрослых: 36,8°С;
нормальная температура у взрослых старше 65 лет: 36,3°С;

Если же меряете температуру не под мышками, то показания термометра (градусника) будут отличаться:

— во рту — больше на 0,3-0,6°С;
— в полости уха — больше на 0,6-1,2°С;
— в прямой кишке — больше на 0,6-1,2°С.

Стоит отметить, что вышеприведенные данные основаны на исследовании 90% пациентов, но в то же время, у 10% наблюдается температура тела, которая отличается в большую или меньшую сторону, и при этом, они абсолютно здоровы. В таких случаях для них это также является нормой.

В целом, колебания температуры в большую или меньшую сторону от нормы, более чем на 0,5-1,5°С является реакцией на любые нарушения в работе организма. Другими словами — это знак, что организм распознал болезнь и начал с ней бороться.

Если Вы желаете узнать точный показатель Вашей нормальной температуры, обратитесь к лечащему врачу. Если такой возможности нет, тогда сделайте это самим. Для этого необходимо на протяжении нескольких дней, когда Вы отлично себя чувствуете сделать измерения температуры, утром, днем и вечером. Показания термометра запишите в тетрадь. Потом отдельно сложите все показатели утренних, дневных и вечерних замеров и разделите сумму на количество замеров. Среднее значения и будут Вашей нормальной температурой.

Повышенная и высокая температура тела

Повышенная и высокая температура тела делится на 4 вида:

Субфебрильная: 37°С — 38°С.
Фебрильная: 38°С — 39°С.
Пиретическая: 39°С — 41°С.
Гиперпиретическая: выше 41°С.

Максимальная температура тела, которая считается критической, т.е. при которой человек умирает — 42°С. Она опасна тем, что в тканях головного мозга нарушается обмен веществ, что практически умерщвляет весь организм.

Причины высокой температуры может указать только врач. Наиболее же частыми причинами являются вирусы, бактерии и другие инородные микроорганизмы, которые проникают в тело через ожоги, обморожения, нарушение правил гигиены, воздушно-капельным путем и др.

Симптомы повышенной и высокой температуры

— усталость, слабость;
— общее болезненное состояние;
— сухость кожи и губ;
— легкий озноб, а при высокой температуре сильный озноб;
— головная боль;
— ломота мышц, боли конечностей;
— аритмия;
— снижение и потеря аппетита;
— повышенная потливость и др.

Срочно вызывать врача следует, если температура поднялась выше 38,5°С, но рекомендуется это делать даже при незначительном отклонении температуры от нормы, т.к. если причинами повышения температуры является какая-либо болезнь, ее легче предупредить на начальных стадиях развития, нежели лечить в дальнейшем.

Интересным моментом является субфебрильная температура, т.к. нормальная температура тела многих людей, как уже упоминалось выше, может несколько отличаться, поэтому, всегда нужно знать, где пересекается граница между нормой (здоровьем организма) и началом заболевания.

Интересные факты

— Впервые температура человеческого тела (оральная температура) была измерена в Германии в 1851 году с помощью одного из первых образцов появившихся ртутных термометров.

— Самая низкая в мире температура тела 14,2 °C зафиксирована 23 февраля 1994 года у 2-летней канадской девочки, проведшей 6 часов на морозе.

— Самая высокая температура тела была зарегистрирована 10 июля 1980 года в больнице в городе Атланте, США у 52-летнего Уилли Джонса, получившего тепловой удар. Температура его оказалась равна 46,5 °C. Из больницы пациент был выписан через 24 дня.

Читайте также:  Пиелонефрит температура 37.2 — Лечим печень

Источник: medicina.dobro-est.com

В градусах

Что такое «произвольная» единица измерения и что она измеряет

Вы не задавались вопросом, почему в градусах измеряют настолько не связанные между собой вещи — углы и температуру? Скажем больше, градусами меряют плотность жидкости и качество молока и (да, мы не забыли) долю спирта. Gradus — латинское слово, означающее шаг, ступень или степень. Иными словами, у градуса, в отличие от метрических единиц измерения, нет конкретной величины, и он не соответствует никакому эталону, привязанному к тем или иным физическим параметрам. При этом размер градуса можно всякий раз устанавливать по-разному, и ничего не изменится. Кому и зачем могла понадобиться такая единица измерения? Давайте разбираться.

Со школы все мы знаем, что в окружности содержится ровно 360 градусов. Но почему именно 360? Ответить на этот вопрос можно по-разному.

По одной версии, древние астрономы, скорее всего персы и каппадокийцы, заметили, что солнце оказывается в одной и той же точке небосвода лишь один раз в 365 дней. Они объяснили это тем, что солнце совершает полный оборот вокруг земли за год и возвращается в исходную точку.

Возможно, они округлили число 365, а может, и просто пропустили пять дней, но в итоге заключили: солнце сдвигается на одну трехсот шестидесятую долю окружности в день.

Другая теория объясняет 360-градусный полный угол совсем другими причинами. Шумеры и вавилоняне пользовались (не самой удобной) шестидесятеричной системой счисления. Большие числа они считали шестидесятками (например, число 1020 это 17 шестидесятков).

Знаки шумерской шестидесятиричной системы счисления

Вписав в окружность правильный шестиугольник, вавилоняне заметили, что в круг отлично помещаются шесть равносторонних треугольников. Каждому треугольнику они приписывали по шестидесятку. В итоге, шесть треугольников по шестидесятку дали известные 360 градусов.

Шестидесятизначная система объясняет и деление градуса на 60 минут (‘) и 3600 секунд (“). Знак, которым мы сегодня обозначаем градусы (°), впервые был использован в математике в 1569 году, по аналогии с верхним штриховым индексом для минут и секунд.

Независимо от истории, полный угол в 360 градусов — лучший вариант из возможных, ведь 360 — сверхсоставное число (натуральное число, с бoльшим числом делителей, чем все предыдущие). Оно делится на все числа от 1 до 10 за исключением семи, а еще и на: 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120 и 180. На такое количество частей вы можете разделить окружность простым вычислением в уме.

Геометрические градусы прошли проверку временем и оказались самой удобной единицей измерения углов. Но есть и другие.

Так, если у вас есть инженерный калькулятор, то, переключаясь между градусами (DEG) и радианами (RAD), вы, возможно, попадали в режим GRAD — это исчисление в градах (или гонах). Один град — это одна сотая часть прямого угла, а значит, полный угол равен 400 град.

Такая единица измерения появилась во времена Французской революции вместе с метрической системой и быстро всех запутала. Кроме проблем с названием, — в некоторых странах grad обозначали привычные градусы, — возникли трудности и с вычислением.

Например, как известно, углы равностороннего треугольника равны друг другу и составляют 60 градусов. Переведем это в грады — 66 целых и шесть в периоде, ужасно неудобно.

В отличие от метрической системы, без которой трудно представить нашу жизнь, вычисления в градах оказались не самыми простыми, сейчас их практически нигде не используют.

Но свой след в истории они оставили — именно благодаря градам стоградусная температурная шкала получила название шкалы Цельсия.

Температура

Как ни странно, температурные шкалы появились гораздо раньше термометров. Создателем первой шкалы можно считать Галена — древнеримского медика, хирурга и философа.

Гален утверждал, что существует некая нейтральная температура — он определил ее как температуру смеси одинакового количества кипящей воды и льда. От нейтральной температуры он отсчитал по четыре шага (ступени) в сторону тепла и холода.

Шведский теолог и физик Иоганн Хаслер на основании работ Галена построил таблицу температуры, опубликованную на страницах труда «De Logistica Medica problematis novem» в 1578 году. Он отложил те же четыре шага тепла и холода по разные стороны от нейтральной температуры, а также заметил, что шкалу можно заменить на последовательность чисел от единицы до девяти.

В таблице значения температуры называются просто «номерами», но в тексте Хаслер использует слово «градус». Нейтральная температура в его системе будет соответствовать числу пять.

Таблица температуры Иоганна Хаслера. Слева направо: первый столбец — шкала Хаслера, второй — шкала Галена, следующие столбцы связаны с рецептами лекарств

Первое устройство, похожее на современный термометр, создал Галилео Галилей приблизительно в 1597 году. Вслед за этим ученые почти 200 лет искали универсальную, удобную и точную шкалу температур.

Например, в 1701 году Исаак Ньютон в опубликованной анонимно работе (в ней он уже использует слово gradus для обозначения единиц тепла) предлагат 18 реперных точек, часть из которых формирует геометрическую, а другая — арифметическую прогрессии. В градусах Ньютона точка замерзания воды равна 0 градусов, а температура человеческого тела — 12 градусов.

В том же году известный астроном Оле Ремер (первым измеривший скорость света) предложил свой вариант. Нулем своей шкалы он выбрал температуру соленой воды со льдом, а вот температуру кипения воды — снова это магическое число — он обозначил как 60 градусов. Эту шкалу позаимствовал знакомый Ремера, Габриэль Фаренгейт.

Фаренгейт избавился от неудобных дробей, возникавших при измерении температуры человеческого тела (22,5 градуса) и замерзания пресной воды (7,5 градуса), заменив их на 24 и 8 градусов соответственно. Вода стала кипеть при 64 градусах Фаренгейта.

Читайте также:  Уксус от температуры как разводить взрослому

Некоторое время он производил термометры с такой шкалой, но потом, в 1724 году, умножил ее на 4. По одной версии, Фаренгейт просто хотел сделать шкалу точнее, поэтому увеличил количество рисок на градуснике, по другой — он сделал это, чтобы увеличение температуры на один Фаренгейт приводило к увеличению объема ртути ровно на одну десятитысячную.

Так появилась знаменитая шкала Фаренгейта, которой люди пользуются и сегодня. Некоторое время она была лучшей из возможных, но затем ей смену пришел более совершенный вариант. Хотя жители США навряд ли согласились бы с нами.

Жозеф Николя Делиль пошел несколько другим путем. Он выбрал всего одну реперную точку, температуру кипения воды, и обозначил ее за ноль. Градуировать шкалу он решил по расширению ртути в термометре — понижение температуры, приводящее к уменьшению объема ртути на одну стотысячную, Делиль обозначил за один градус.

Температура замерзания воды в таком случае — 2400 градусов, шкала оказалась излишне мелкой, поэтому в 1738 году Иосия Вейтбрехт изменил ее. Он задал температуру замерзания воды в 150 градусов.

Такие термометры стали удобными и получили широкое распространение. Ими примерно сто лет пользовались в России, Ломоносов использовал термометр Делиля (правда, перевернув шкалу) в своих опытах.

Только в этот момент на сцене появляется Андерс Цельсий. В 1741 году он наносит на термометр Делиля свою шкалу — 0 градусов в точке кипения и 100 градусов в точке замерзания воды. Перевернули шкалу (скорее всего, это сделал Карл Линней) через год после смерти Цельсия (он умер в 1744 году от туберкулеза).

Кстати, к 1745 году уже существовал термометр с нулем в точке замерзания и сотней градусов в точке кипения воды. Он называется термометром Лиона, его изобретатель — французский физик Жан-Пьер Кристен.

Заслуга Цельсия в другом — он провел эксперименты, продемонстрировавшие, что температура плавления льда практически не зависит от давления. Более того, он с высокой точностью определил, как температура кипения воды изменяется в зависимости от атмосферного давления.

Цельсий предложил калибровать ноль своей температурной шкалы (в тот момент, точку кипения воды) по атмосферному давлению, определить которое можно по среднему уровню моря.

Эта калибровка наконец сделала термометры по-настоящему универсальными. Вероятно, именно поэтому прогноз погоды, который вы смотрели сегодня утром, был в градусах Цельсия.

Но стоградусную температурную шкалу назвали в честь Цельсия только в 1948 году. До этого она так и называлась — стоградусной температурной (centigrade temperature scale). Но во французском (где использовали грады) термин centigrade уже был занят в геометрии.

Чтобы избежать путаницы, Международное бюро мер и весов переименовало шкалу в честь Андерса Цельсия. Так градусы температуры стали градусами Цельсия.

Диаграмма перевода температур, на которой указаны основные температурные шкалы

Источник: nplus1.ru

Основы термометрии

Понятие температуры и температурной шкалы

Парадокс заключается в том, что чтобы измерять температуру в быту, промышленности и даже в прикладной науке не нужно знать, что такое «температура». Достаточно довольно расплывчатого представления, что «температура – это степень нагретости тела». Действительно, большинство практических приборов для измерения температуры фактически измеряют другие свойства веществ, меняющиеся от этой степени нагретости, такие как давление, объем, электрическое сопротивление и т.д. Затем их показания автоматически или вручную пересчитываются в единицы температуры.

Любознательные люди и студенты, которые либо хотят, либо вынуждены разобраться, что же такое температура, обычно попадают в стихию термодинамики с ее нулевым, первым и вторым законами, циклом Карно и энтропией. Нужно признать, что определение температуры, как параметра идеальной обратимой тепловой машины, не зависящего от рабочего вещества, обычно не добавляет ясности в наше ощущение понятия «температура».

Более «осязаемым» кажется подход, называемый молекулярно-кинетической теорией, из которого формируется представление, что теплота может рассматривается просто как одна из форм энергии, а именно – кинетическая энергия атомов и молекул. Эта величина, усредненная по огромному числу беспорядочно движущихся частиц, и оказывается мерилом того, что называется температурой тела. Частицы нагретого тела движутся быстрее, чем холодного.

Поскольку понятие температуры тесно связано с усредненной кинетической энергией частиц, было бы естественным и в качестве единиц ее измерения использовать джоуль. Однако, энергия теплового движения частиц очень мала по сравнению с джоулем, поэтому использование этой величины оказывается неудобным. Тепловое движение измеряется в других единицах, которые получаются из джоулей посредством переводного коэффициента «k».

Если температура T измеряется в кельвинах (К), то связь ее со средней кинетической энергией поступательного движения атомов идеального газа имеет вид

где k – переводный коэффициент, определяющий, какая часть джоуля содержится в кельвине. Величина k называется постоянной Больцмана.

Учитывая, что давление тоже может быть выражено через среднюю энергию движения молекул

где n = N/V, V – объем, занимаемый газом, N – полное число молекул в этом объеме

Уравнение состояния идеального газа будет иметь вид:

Если полное число молекул представить в виде N = µNA, где µ – число молей газа, NA – число Авагадро,т.е число частиц на один моль, можно легко получить известное уравнение Клапейрона – Менделеева:

Таким образом, температура – это искусственно введенный в уравнение состояния параметр. С помощью уравнения состояния можно определить термодинамическую температуру Т, если все другие параметры и константы известны. Из такого определения температуры очевидно, что значения Т будут зависеть от константы Больцмана. Можем ли выбрать для этого коэффициента пропорциональности произвольное значение и затем на него опираться? Нет. Ведь мы можем таким образом получить произвольное значение для тройной точки воды, в то время как мы должны получить значение 273,16 К! Возникает вопрос – почему именно 273,16 К?

Причины тому чисто исторические, а не физические. Дело в том, что в первых температурных шкалах были приняты точные значения сразу для двух состояний воды – точки затвердевания (0 °С) и точки кипения (100 °С). Это были условные значения, выбранные для удобства. Учитывая, что градус Цельсия равен градусу Кельвина и выполняя измерения термодинамической температуры газовым термометром, градуированным в этих точках, получили для абсолютного нуля (0 °К) методом экстраполяции значение – 273,15 °С. Конечно, это значение можно считать точным только в том случае, если измерения газовым термометром были абсолютно точны. Это не так. Поэтому фиксируя значение 273,16 К для тройной точки воды, и измерив точку кипения воды более совершенным газовым термометром, можно получить слегка отличное от 100 °С значение для кипения. Например, сейчас наиболее реальным является значение 99,975 °С. И это только потому, что ранние работы с газовым термометром дали ошибочное значение для абсолютного нуля. Таким образом, мы либо фиксируем абсолютный ноль, либо интервал 100 °С между точками затвердевания и кипения воды. Если зафиксировать интервал и повторить измерения для экстраполяции к абсолютному нулю, то получим -273,22 °С.

Читайте также:  Как натереть ребенка водкой при температуре

В 1954 г. МКМВ принял резолюцию о переходе на новое определение кельвина, никак не связанное с интервалом 0 -100 °С. Оно фактически закрепило за тройной точкой воды значение 273,16 К (0,01 °С) и «пустило в свободное плаванье» около 100 °С точку кипения воды. Вместо «градуса Кельвина» для единицы температуры был введен просто «кельвин».

Из формулы (3) следует, что приписав Т при таком стабильном и хорошо воспроизводимом состоянии системы как тройная точка воды фиксированное значение 273,16 К, значение константы k можно определить экспериментально. До недавнего времени наиболее точные экспериментальные значения константы Больцмана к получались методом предельно разреженного газа.

Существуют и другие методы получения постоянной Больцмана, основанные на использовании законов, в которые входит параметр кТ.

Это закон Стефана-Больцмана, согласно которому полная энергия теплового излучения Е(Т) является функцией четвертой степени от кТ.
Уравнение, связывающее квадрат скорость звука в идеальном газе с 2 линейной зависимостью с кТ.
Уравнение для среднего квадратического напряжения шумов на электрическом сопротивлении V 2 , также линейно зависящего от кТ.

Установки для реализации вышеперечисленных методов определения кТ называются приборами абсолютной термометрии или первичной термометрии.

Таким образом, в определении значений температуры в кельвинах, а не в джоулях много условностей. Основное то, что сам коэффициент пропорциональности k между температурными и энергетическими единицами не является постоянным. Он зависит от точности термодинамических измерений, достижимой на настоящий момент. Такой подход не очень удобен для первичных термометров, особенно работающих в диапазоне температур, далеком от тройной точки. Их показания будут зависеть от изменений в значении постоянной Больцмана.

Рекомендуемое значение постоянной Больцмана в настоящее время (CODATA 2014) k = 1,380 64852 х 10 -23 Дж/K с относительной неопределенностью 5.7 х 10 -7

Но можно поступить и наоборот. Зафиксировать значение константы k. Тогда получим зависимое от k значение Т для тройной точки воды. Этот подход рассматривался Консультативным комитетом по термометрии, начиная с 2005 г. В результате в мае 2019 г. было утверждено новое определение единицы температуры. Подробнее см. разделы Развитие международной шкалы и Современное определение Кельвина.

Установки первичной термометрии очень сложные, требуют специальных условий применения, сложных методик контроля параметров эксперимента, введения множества поправок. Фактически, такое оборудование не может служить практическим целям измерения температуры.
Поэтому в 1927 г. и была введена практическая температурная шкала МТШ-27, основу которой составляют температуры реперных точек (фазовых переходов чистых веществ), определенные методами первичной термометрии. В данных точках градуируются практические термометры (например, термометры сопротивления), которые затем и служат для измерения температуры и передачи размера единицы температуры. С 1927 г. шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же – основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. Подробнее об истории развития международной температурной шкалы смотрите раздел История единицы температуры и международной шкалы температур.

Каждое изменение практической международной температурной шкалы – результат научных исследований метрологических центров всего мира. Введение новой редакции температурной шкалы сказывается на градуировках всех средств измерения температуры.

Международная температурная шкала (МТШ-90) введена в соответствии с решением XVIII Генеральной конференции по мерам и весам. МТШ-90 по сути является практической температурной шкалой и заменяет собой предыдущую Международную практическую температурную шкалу МПТШ-68. Основные изменения в шкале связаны с изменением температур реперных точек, расширением диапазона определения шкалы, введением новых интерполяционных приборов и новых методик построения интерполяционных зависимостей для платиновых термометров сопротивления. Шкала считается очень близко аппроксимирующей термодинамическую шкалу температур, поэтому слово «практическая» было опущено в ее названии.
Международная температурная шкала постоянно развивается и дополняется. Так, в октябре 2000 г. Международный комитет по мерам и весам при МВМВ утвердил новую предварительную низкотемпературную международную шкалу ПНТШ-2000 (PLTS-2000), которая расширяет диапазон МТШ-90 в низкотемпературной области. Шкала начинается с температуры 0,902 мК, соответствующей твердому состоянию 3 He и доходит до температуры 1 К, таким образом перекрывая диапазон МТШ-90 в интервале 0,65 -1 К. Шкала основана на измерении давления при плавлении 3 He. Были выпущены основополагающие документы: текст шкалы и Дополнительная информация. (См. раздел Официальный текст и дополнительная информация).
В июне 2005 г. Консультативный комитет по термометрии выпустил Техническое приложение к МТШ-90, которое получило статус обязательного приложения к тексту шкалы. Дополнение касается определения температуры тройной точки воды и основано на результатах анализа расхождений значений температур ампул тройной точки воды, использующих воду разного изотопного состава. Техническое приложение также приведено в разделе Официальный текст и дополнительная информация.

Необходимо отметить, что введение в 2019 г. нового определения Кельвина не отменяет шкалу МТШ-90, но позволяет использовать также термодинамические методы измерения, что особенно важно для диапазона высоких температур, далекого от температуры тройной точки воды.

Источник: temperatures.ru